Açıortay - Kenarortay Konu Anlatımı

2010-10-06 20:40:00

Bu konu anlatımı http://www.matematikci.org sitesinden alınmıştır. Herhangi bir yayın hakkı ihlali söz konusu olduğu takdirde admine bildirilmesi halinde konu en geç 1 hafta içerisinde kaldırılacaktır.

İletişim : liseodevleri@gmail.com 

  • ÜÇGENDE AÇIORTAY BAĞINTILARI

1. Açıortay

Herhangi bir açının ölçüsünü iki eş açıya bölen ışınlara açıortay denir.

Yandaki şekilde AOB açısını iki eş açıya ayıran [OC ışınına açıortay denir.

Açıortay üzerindeki herhangi bir noktadan açının kenarlarına çizilen dik uzunluklar eşittir.

AOB bir açı,

[OC açıortay

m(AOC) = m(COB)

|AC|=|CB|

AOC ve BOC eş

üçgenler olduğundan

|OA| = |OB|

2. İç Açıortay Bağıntısı

ABC üçgeninde [AN] açıortay ABN ve ANC üçgenlerinin

[BC] tabanına göre, yükseklikleri eşit olduğundan

olur .....(1)

 

ABN üçgeninde [AB] kenarına ait yükseklik ANC üçgeninde

[AC] kenarına ait yüksekliğe eşittir.

olur .....(2)

[AN] açıortay olmak şartıyla bu iki alan oranını birleştirirsek; (1) ve (2) den

olur

 

ABC üçgeninde [AN] açıortay olmak şartıyla
Buradan ve b.y=c.x eşitlikleri de elde edilir.

3. İç Açıortay Uzunluğu

ABC üçgeninde A köşesinden çizdiğimiz açıortay

uzunluğuna nA dersek

4. Dış Açıortay Bağıntısı

ABC üçgeninde [AD], A köşesine ait dış açıortaydır.

5. Dış Açıortay Uzunluğu

ABC üçgeninde [AD] dış açıortayının uzunluğuna

n'A dersek

6. İç açıortayla dış açıortay arasındaki açı

m(DAE)=90°

 

 

 

ABC üçgeninde [AD] iç açıortayı ile [AE] dış açıortayı arasındaki açı için

2a + 2b = 180°

a + b = 90° dir.

[DA]^ [AE]
  • Bir üçgende iç açıortayların kesim noktası iç teğet çemberin merkezidir.

P noktasının kenarlara uzaklığı eşittir. Merkezden indirilen dikmeler iç teğet çemberin yarıçapı olur.

  • ÜÇGENDE KENARORTAY BAĞNTILARI

1. Ağırlık Merkezi

Üçgenlerde kenarortaylar bir noktada kesişirler.Kenarortayların kesişim noktasına ağırlık merkezi denir.

ABC üçgeninde [AD], [BE] ve [CF] kenarortaylarının

kesiştikleri G noktasına ABC üçgeninin ağırlık merkezi

denir.

a. Ağırlık merkezi kenarortayı, kenara 1 birim, köşeye 2 birim olacak şekilde böler.

ABC üçgeninde D, E, F noktaları bulundukları kenarların

orta noktaları ve G ağırlık merkezi ise

eşitlikleri vardır.

 

b. Bir üçgende iki kenarortayın kesişmesiyle oluşan nokta ağırlık merkezidir.

 

c. ABC üçgeninde [AD] kenarortay ve

|AG| = 2|GD| olduğundan G noktası

ağırlık merkezidir.

 

d. ABC üçgeninde [AD] kenarortay ve |CG| = 2|FG|

olduğundan G noktası ağırlık merkezidir.

 

e. ABC üçgeninde

|AG| = 2|GD| ve |CG| = 2|GF|

eşitliğini sağlayan G noktası ABC

üçgeninin ağırlık merkezidir.

2. Dik üçgende hipotenüse ait kenarortay hipotenüsün yarısına eşittir.

ABC dik üçgeninde [BD] hipotenüse ait kenarortay

|AG|=|DC|=|BD|

3. Kenarortayların Böldüğü Alanlar

 

a.Kenarortaylar üçgenin alanını altı eşit parçaya bölerler.

 

b.G ağırlık merkezi köşelere birleştirildiğinde üçgenin alanı üç eşit parçaya bölünür.

 

c. G ağırlık merkezi kenarların orta noktaları ile birleştirildiğinde üçgenin alanı üç eşit parçaya bölünür.

 

4.ABC üçgeninde kenarortaylar ve [FE] çizilirse

|AK| = 3x

|KG| = x

|GD| = 2x eşitlikleri bulunur.

K noktası [AD] kenarortayının orta noktasıdır.

[FE] //[BC]
2[FE]=[BC]

 

a. ABC üçgeninde kenarortaylar ve [FE] çizildiğinde

şekildeki gibi bir alan bölünmesi oluşur.

 

b.Kenarların orta noktalarını birbirine birleştirdiğimizde üçgenin alanı dört eşit parçaya bölünür.

 

5. Kenarortay Uzunluğu

ABC üçgeninde A köşesinden çizilen

kenarortayın uzunluğuna Va dersek

Bu bağıntı diğer kenarortaylar içinde geçerlidir.

Kenarortaylar taraf tarafa toplanırsa

Kenarortaylar taraf tarafa toplanırsa

 

6. Dik Üçgende Kenarortaylar

A açısı 90° olan bir dik üçgendekenarortaylar arasında


 

236
0
0
Yorum Yaz